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We considered the most general motion of systems of particles.  We specifically consider 
rigid bodies, defined as multi-particle objects in which the distance between any two particles 
never changes as the object moves.  As discussed before, this puts a huge constraint on the 
system, changing it from a 3N degree of freedom object to a 6 degree of freedom system.  
We reviewed the center of mass, center of mass momentum, and Newton’s second law for 
the CM.  We then considered the angular momentum of a rigid body and found that it 
decomposes cleanly into the angular momentum of the center of mass (relative to some 
origin), and the angular momentum relative to the CM.  For a rigid body, the only motion it 
can have relative to the CM is rotation.  

 Next we considered an arbitrary rigid object that is forced to rotate about a single fixed 
axis, which we take to be the z-axis.  Because we want to work in an inertial reference frame, 
we choose the origin of the coordinate system to be somewhere on the axis of rotation.  The 
angular velocity of the object can be written as 𝜔��⃗ = 𝜔�̂�.  Naively we might expect that the 
angular momentum of the object to be 𝐿�⃗ = 𝐼𝑧𝜔��⃗ , where 𝐼𝑧 = ∑ 𝑚𝛼𝜌𝛼2𝑁

𝛼  is the moment of 
inertia for rotation about that axis.  This turns out to be true only in special cases of very 
symmetric objects, or when the axis of rotation is chosen along one of the ‘principal axes’, 
defined later.  We did the full general calculation of 𝐿�⃗  and found that 𝐿�⃗ = 𝐿𝑥𝚤̂ + 𝐿𝑦𝚥̂ + 𝐿𝑧𝑘�, 
where 𝐿𝑥 = −∑ 𝑚𝛼𝑥𝛼𝑧𝛼𝑁

𝛼 𝜔, 𝐿𝑦 = −∑ 𝑚𝛼𝑦𝛼𝑧𝛼𝑁
𝛼 𝜔, and 𝐿𝑧 = −∑ 𝑚𝛼(𝑥𝛼2 + 𝑦𝛼2)𝑁

𝛼 𝜔.  Thus 
in general the angular momentum vector 𝐿�⃗  is not parallel to the axis of rotation 𝜔�. 

Next we considered an arbitrary rigid body rotating about an arbitrary axis (in general the 
axis of rotation of an object will change as it moves).  Again we choose the origin to be on 
the axis of rotation, allowing us to use the result that �⃗� = 𝜔��⃗ × 𝑟, which only holds for this 
choice of origin.  We calculated 𝐿�⃗  by summing over all particles in the system and found that 
the vector quantity could be broken down into components as 𝐿𝑥 = 𝐼𝑥𝑥𝜔𝑥 + 𝐼𝑥𝑦𝜔𝑦 + 𝐼𝑥𝑧𝜔𝑧, 
with 𝐼𝑥𝑥 = ∑ 𝑚𝛼(𝑦𝛼2 + 𝑧𝛼2)𝑁

𝛼 , 𝐼𝑥𝑦 = −∑ 𝑚𝛼𝑥𝛼𝑦𝛼𝑁
𝛼 , 𝐼𝑥𝑧 = −∑ 𝑚𝛼𝑥𝛼𝑧𝛼𝑁

𝛼 , and similar 
expressions for 𝐿𝑦 and 𝐿𝑧.  All of these results can be summarized in a simple matrix 

equation as 𝐿�⃗ = 𝐼�̿���⃗ , where 𝐿�⃗ = �
𝐿𝑥
𝐿𝑦
𝐿𝑧
� is the angular momentum represented as a column 

vector, 𝐼 ̿ = �
𝐼𝑥𝑥 𝐼𝑥𝑦 𝐼𝑥𝑧
𝐼𝑦𝑥 𝐼𝑦𝑦 𝐼𝑦𝑧
𝐼𝑧𝑥 𝐼𝑧𝑦 𝐼𝑧𝑧

� is called the inertia tensor, and 𝜔��⃗ = �
𝜔𝑥
𝜔𝑦
𝜔𝑧
� is the angular 
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velocity vector.  Note that the inertia tensor is symmetric about the diagonal: 𝐼𝑖𝑖 = 𝐼𝑖𝑖 .  The 
inertia tensor is a property of the object and its mass distribution alone.  𝐿�⃗ = 𝐼�̿���⃗  is a general 
expression relating the angular momentum vector to the axis of rotation. 

We did the example of a cube of side 𝑎 and mass 𝑀 rotated about one edge.  The inertia 
tensor can be calculated by converting the sums to integrals, for example: 𝐼𝑥𝑥 =

∑ 𝑚𝛼(𝑦𝛼2 + 𝑧𝛼2)𝑁
𝛼

𝑦𝑖𝑦𝑦𝑦𝑦
�⎯⎯⎯� ∫ 𝑑𝑥𝑎

0 ∫ 𝑑𝑦𝑎
0 ∫ 𝑑𝑧𝑎

0  𝜌 (𝑦2 + 𝑧2), where 𝜌 = 𝑀/𝑎3 is the density of 
the uniform cube.  Here we assume that the corner of the cube (at the origin of the Cartesian 
coordinate system) will remain fixed during the rotation.  The resulting inertia tensor for this 

case is 𝐼 ̿ = 𝑀𝑎2

12
�

8 −3 −3
−3 8 −3
−3 −3 8

� .  This inertia tensor can be used for any rotation axis that 

passes through the corner of the cube at the origin.  In particular, for rotation about the x-

axis, 𝜔��⃗ = (𝜔, 0,0) and we find the angular momentum to be 𝐿�⃗ = 𝑀𝑎2𝜔 �2
3

,−1
4

,−1
4
�.  It is 

clear in this case that 𝐿�⃗  is not parallel to 𝜔��⃗ .  This is due in part to the fact that the object is not 
symmetric with respect to the axis of rotation.  On the other hand, if we choose the rotation 
axis to be along the body diagonal of the cube (through the corner where the origin is 
located) we have 𝜔��⃗ = 𝜔

√3
(1,1,1) and the resulting angular momentum vector is 𝐿�⃗ = 𝐼�̿���⃗ =

𝑀𝑎2

6
𝜔��⃗ .  For this choice of rotation axis the angular momentum vector IS parallel to the 

angular velocity direction.  This gives us hope that there can be choices of rotation axes 𝜔��⃗  
such that the angular momentum vector is parallel to 𝜔��⃗ . 

A surprising result is that any object, no matter how irregular, always has 3 perpendicular 
principal axes (for a given choice of origin), for which the angular momentum vector and 
angular velocity are parallel.  In other words, for any object we can find three perpendicular 
axes around which the object will rotate without “wobbling”.  The formal statement is this: 
For any rigid body and any choice of origin O there are three mutually perpendicular 
principal axes through O.  This amounts to finding three perpendicular axes through O for the 
calculation of the inertia tensor yields a diagonal matrix.  This result arises from the linear 
algebraic properties of any real symmetric matrix (namely 𝐼)̿ – it can always be diagonalized 
and the eigenvalues are real. 

How to find the principal axes of an arbitrary object?  We are looking for three directions 
for the angular velocity vector 𝜔��⃗  to create an angular momentum vector that satisfies 𝐿�⃗ =
𝜆𝜔��⃗ , where 𝜆 is some real scalar number.  This is the condition for two vectors to be parallel.  
Since in addition we know that in general 𝐿�⃗ = 𝐼�̿���⃗ , we can combine these two equations to 
find: 𝐼�̿���⃗ = 𝜆𝜔��⃗ , which is a classic eigenvalue problem.  This equation states that a matrix 
multiplying a vector produces the same vector multiplied by a real number, the eigenvalue.  
The eigenvectors of this equation constitute the angular velocity directions that diagonalize 
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the intertia tensor, and constitute the principal axes.  These three vectors span the 3-
dimensional coordinate space and are therefore mutually perpendicular.   

We write 𝜆𝜔��⃗ = 𝜆1�𝜔��⃗ , where 1� is the 3x3 unit matrix, and then construct the eigenvalue 
matrix equation: �𝐼 ̿ − 𝜆1��𝜔��⃗ = 0.  The only way to get non-trivial solutions from this 
equation is to demand that 𝑑𝑑𝑑�𝐼 ̿ − 𝜆1�� = 0.  This yields three eigenvlaues and three eigen-
functions.  We examined the case of the cube rotated on an axis that passes through one 
corner of the cube, for which we calculate the inertia tensor above.  This inertia tensor yields 
a characteristic equation 𝑑𝑑𝑑�𝐼 ̿ − 𝜆1�� = (2𝜇 − 𝜆)(11𝜇 − 𝜆)2 = 0, where 𝜇 = 𝑀𝑎2/12, 
giving 𝜆 = 2𝜇 as an eigenvalue and 𝜆 = 11𝜇 as a double eigenvalue.  The eigenvector 
associated with 𝜆1 = 2𝜇 is 𝜔1� = 1

√3
(1,1,1), which represents the body diagonal of the cube.  

The cube has a moment of inertia of 2𝜇 = 𝑀𝑎2/6 for rotation about this axis.  The other two 
eigenvalues yield only the condition 𝜔𝑥 + 𝜔𝑦 + 𝜔𝑧 = 0 on the eigenvectors, which simply 
mean that they have to be perpendicular to 𝜔1� .  We are free to choose any two such 
directions that are mutually perpendicular.  A set of possible choices are 𝜔2� =
1
√6

(2,−1,−1), and 𝜔3� = 1
√2

(0,1,−1), for which the cube has moment of inertia 11𝜇 =

11𝑀𝑎2/12.  To summarize, the principal axes𝜔1� , 𝜔2� , 𝜔3�  diagonalize the inertia tensor as 

𝐼 ̿ = 𝑀𝑎2

12
�

2 0 0
0 11 0
0 0 11

�. 

 


